Comparative evaluation of different doses of gabapentin and celecoxib as multimodal oral analgesia in patients of spine fixation surgery

Khaled A. Abdou, Al Shimaa I. Roushdy and Amna Th. Gadelrab Radwan
Department of Anesthesia, El-Minia Faculty of Medicine

Abstract
Introduction: Since an increased number of major spinal procedures, including revision surgery can be anticipated, we found it of relevance to assess a multimodal pain treatment strategy in patients undergoing surgery requiring instrumentation. Aim of the work: The aim of this randomized double-blinded study is to assess and compare the efficacy of using different doses of gabapentin and celecoxib as combination for analgesia in postoperative pain relief in patients undergoing posterior approach lumbar spine fixation surgery. Patients and Methods: After obtaining the local ethics committee of Minia University Hospital approval and written informed consent was taken from the patient, one hundred patients of both gender, patients were randomized to four groups (25 patients in each group): Group GC received gabapentin 300mg + celecoxib 200mg 2hr preoperative and the same combination 6 hr postoperative. Group G received gabapentin 300mg + celecoxib 200mg 2hr preoperative and gabapentin 300mg 6 hr postoperative. Group C received gabapentin 300mg + celecoxib 200mg at both 2hr preoperative and celecoxib 200mg 6 hr postoperative. Group O (placebo) as control group received empty capsules 2hr preoperative and 6 hr postoperative VAS score obtained from all patients immediately after recovery from anesthesia, at 2hr, 4hr, 6hr, 8hr, 10hr, 12hr and 24hr post-operative.

Results: Postoperative VAS score was significantly lower in the three groups (GC, G and C) respectively when compared with group O. Discussion: Spinal procedures are associated with high level of postoperative pain compared to other surgical procedures and majority of patients report moderate to severe pain, which persists for at least initial 3-4 days. Recommendation: Based on the current study we recommend: Usage of preemitive multimodal analgesic with various mechanism of action is more useful in post-operative pain relief after major surgery. KeyWords: Acute neuropathic pain, Hour, Minimal invasive spine surgery, Noninvasive blood pressure.
trauma-related pain because its synergistic effect maximizes pain relief at lower analgesic doses, thereby reducing the risk of adverse drug effects (Polomano et al., 2017).

Aim of the work
To assess and compare the efficacy of using different doses of gabapentin and celecoxib as combination for multi modal analgesia in postoperative pain relieve in patient underwent posterior approach lumbar spine fixation surgery.

Patients and Methods
After obtaining the local ethics committee of Minia University Hospital approval and written informed consent was taken from the patient, one hundred patients of both gender, American society of anesthesiologists (ASA) I and II, aged between 20-60 years old scheduled to undergo elective posterior approach lumbar spine fixation surgery (3 levels or less) done by the same surgeon under general anesthesia, were enrolled in this prospective, randomized, double blinded controlled study.

Preoperative assessment and preparation:
- A careful medical history was taken.
- General examination including pulse (HR), arterial blood pressure, respiratory rate (RR) and oxygen saturation.
- Physical examination including chest, heart, abdomen, and other systems.
- Routine investigations including:
 - Complete blood picture (Hb, platelet), coagulation profile (PC, PT, INR), renal function test (urea, creatinine), liver function test (AST, ALT, albumin, bilirubin) and random blood sugar.
 - Electrocardiogram (ECG) for patients over 40 years old.

We explained to patients all steps of general anesthesia, and how to evaluate their own pain intensity using the visual analogue score of pain (VAS), explanation of VAS was done, (VAS is consisted of a straight, vertical 10-cm line; the bottom point represented "no pain"=0 cm) and the top "the worst pain you could ever have"= (10 cm) (Chuangang Peng et al., 2017).

Drugs and tools used in the study:
1. Gabapentin (Gaptin 300 mg Cap, Delta pharma, Egypt)
2. Celecoxib (Celebrex 200mg Cap, phizer)
3. Placebo capsules (empty capsules).
4. Bispecteral index (BIS) (COVIDIEN, Singapora).
5. One touch device for random blood sugar (On call plus).
6. Monitor (UltraviewSL2700, Spacelaps, USA) for (ECG, SPO2 and NIBP).
7. Anesthetic machine ((Datex Ohmeda, GE, USA).
8. Portable pulse oximetry (OLED digital)

Study patient groups:
Patients were randomized to four groups (25 patients in each group):
- Group GC received gabapentin 300mg + celecoxib 200mg 2hr preoperative and the same combination 6 hr postoperative.
- Group G received gabapentin 300mg + celecoxib 200mg 2hr preoperative and gabapentin 300mg 6 hr postoperative.
- Group C received gabapentin 300mg + celecoxib 200mg at both 2hr preoperative and celecoxib 200mg 6hr postoperative.
- Group O (placebo) as control group received empty capsules 2hr preoperative and 6 hr postoperative.

Results
One hundred patients of both gender, ASA I and II, aged between 20-60 years old scheduled to undergo elective posterior approach lumbar spine fixation surgery 3 levels or less under general anesthesia were enrolled in this prospective, randomized, double blinded controlled study in Minia University Hospital. Patients enrolled and randomized into 4 equal groups each group 25 patients.

Patient's Characteristics Data:
As regard Patient's characteristics age, sex, duration of surgery and cause of operation were comparable in all studied groups with p value >0.005.

Comparative evaluation of different doses of gabapentin and celecoxib as multimodal oral analgesia
As shown at Table 1.

Table 1 patient’s characteristics data (Data are presented as range, mean ± SD).

<table>
<thead>
<tr>
<th></th>
<th>GC (n=25)</th>
<th>G (n=25)</th>
<th>C (n=25)</th>
<th>O (n=25)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yrs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean±SD (Range)</td>
<td>45.7±8.2 (32-60)</td>
<td>44.7±9.7 (30-60)</td>
<td>42.4±10.9 (21-61)</td>
<td>49.5±9.7 (28-60)</td>
<td>0.077</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>14 (56%)</td>
<td>15 (60%)</td>
<td>16 (64%)</td>
<td>14 (56%)</td>
<td>0.929</td>
</tr>
<tr>
<td>Female</td>
<td>11 (44%)</td>
<td>10 (40%)</td>
<td>9 (36%)</td>
<td>11 (44%)</td>
<td></td>
</tr>
<tr>
<td>Duration of surgery (min.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean±SD (Range)</td>
<td>115.6±25.5 (80-160)</td>
<td>115.6±26.6 (80-160)</td>
<td>112.4±15.9 (90-140)</td>
<td>103.2±12.8 (80-120)</td>
<td>0.129</td>
</tr>
<tr>
<td>Cause of operation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensory loss</td>
<td>4 (16%)</td>
<td>7 (28%)</td>
<td>5 (20%)</td>
<td>4 (16%)</td>
<td>0.923</td>
</tr>
<tr>
<td>Motor deficit</td>
<td>10 (40%)</td>
<td>9 (36%)</td>
<td>8 (32%)</td>
<td>9 (36%)</td>
<td></td>
</tr>
<tr>
<td>Failure of medical treatment</td>
<td>11 (44%)</td>
<td>9 (36%)</td>
<td>12 (48%)</td>
<td>12 (48%)</td>
<td></td>
</tr>
</tbody>
</table>

One way ANOVA test for parametric quantitative data between the four groups, Chi square test for qualitative data* Significant difference at p value < 0.05.

During studying we noted that VAS was significantly lower in the three groups (GC, G and C) respectively compared with group O immediately after recovery, 2nd hr, 4th hr, 6th hr, 8th hr, 10th hr, 12th hr and 24th hr post-operative with P value < 0.01. Inter group comparison revealed that the three groups (GC, G and C) were comparable regarding to VAS immediately after recovery. But comparison between groups revealed that VAS score was the best in group GC, and worst in group O in 2nd hr, 4th hr, 6th hr, 8th hr, 10th hr, 12th hr and 24th hr post-operative.
Comparative evaluation of different doses of gabapentin and celecoxib as multimodal oral analgesia

2-Comparison of postoperative VAS scores.

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>VAS</th>
<th>GC (n=25)</th>
<th>G (n=25)</th>
<th>C (n=25)</th>
<th>O (n=25)</th>
<th>p value</th>
<th>Between groups</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Median</td>
<td>IQR</td>
<td>Median</td>
<td>IQR</td>
<td>Median</td>
<td>IQR</td>
<td>Median</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(IQR)</td>
<td></td>
<td>(IQR)</td>
<td></td>
<td>(IQR)</td>
<td></td>
<td>(IQR)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 (0-2)</td>
<td>1 (0-2)</td>
<td>1 (0-2)</td>
<td>4 (2-4)</td>
<td><0.001*</td>
<td>GC vs G</td>
<td>0.890</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 (1-2)</td>
<td>2 (2-2)</td>
<td>2 (1-3)</td>
<td>5 (5-6)</td>
<td><0.001*</td>
<td>GC vs G</td>
<td>0.353</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 (2-2)</td>
<td>2 (2-3)</td>
<td>2 (2-3)</td>
<td>5 (5-6)</td>
<td><0.001*</td>
<td>GC vs G</td>
<td>0.132</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 (2-4)</td>
<td>3 (2-4)</td>
<td>3 (3-4)</td>
<td>6 (5-7)</td>
<td><0.001*</td>
<td>GC vs G</td>
<td>0.534</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 (2-3)</td>
<td>3 (2-3)</td>
<td>3 (2-3)</td>
<td>7 (5-7)</td>
<td><0.001*</td>
<td>GC vs G</td>
<td>0.265</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 (1-2)</td>
<td>2 (2-3)</td>
<td>3 (2-3)</td>
<td>7 (5-7)</td>
<td><0.001*</td>
<td>GC vs G</td>
<td>0.081</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 (2-2)</td>
<td>2 (2-2)</td>
<td>3 (2-3)</td>
<td>6 (6-7)</td>
<td><0.001*</td>
<td>GC vs G</td>
<td>0.185</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 (2-2)</td>
<td>2 (2-2)</td>
<td>2 (2-3)</td>
<td>6 (5-6)</td>
<td><0.001*</td>
<td>GC vs G</td>
<td>0.516</td>
</tr>
</tbody>
</table>
Discussion
Spinal procedures are associated with high level of postoperative pain compared to other surgical procedures and majority of patients report moderate to severe pain, which persists for at least initial 3-4 days. This pain is proportional to the number of operated vertebrae and the invasiveness of the procedure (Devin & McGirt, 2015).

Adequate pain relief is important facet of postoperative care of these patients as these patients had already suffered from preexisting chronic pain that had been treated with conventional analgesics or narcotics. The long-term consumption of analgesics and/or opioids alters pain perception in these patients thereby complicating pain management. Effective pain controls facilitates early mobilization as well as decrease hospital stay (Bajwa & Haldar, 2015).

NSAIDs play a role in pain relief, especially in postoperative pain caused by inflammation. They have demonstrated significant opioid dose-sparing effects, which help in reducing postoperative effects and opioid side effects (Zhifeng Zhang et al., 2017).

Celecoxib is a selective cyclooxygenase (COX)-2 inhibitor, has inhibitory effects on prostaglandins synthesis, both in the spinal cord and peripheral nervous system, and reduces hyperalgesia status after surgical traumas. It is illuminated that compared with conventional nonsteroidal anti-inflammatory drugs, celecoxib has less gastrointestinal side effects and less influence on antiplatelet function with long-term use (Zhou, et al., 2017). Recently, celecoxib has been demonstrated to have analgesic efficacy after spinal surgery, COX-2 inhibitors have been demonstrated to have analgesic efficacy during pain at rest and with movement (Sekiguchi et al., 2015).

Gabapentin used in many studies, gabapentin is a structural feature of gamma amino butyric acid. The mechanism of gabapentin action is to reduce the release of several excitatory neurotransmitters (e.g. glutamate, substance P, calcitonin, noradrenaline, gene-related peptide) by binding to the α2δ subunit of voltage dependent calcium channels (Patel & Dickenson, 2016). Gabapentin has antiallo-dynic, antihyperalgesic properties that decrease the hyperexcitability of dorsal horn neurons due to tissue injury, and anxiolytic effects (Javaherforooshzadeh et al., 2018).

Multimodal analgesic arose to allow synergistic effects of different analgesics used at a lower dose to reduce side effects and limit the amount of opioids consumed and provide more effective postoperative pain control than opioids alone. Component therapies of multimodal analgesia with substantial evidence to support efficacy in postoperative patients include gabapentinoids, acetaminophen, ketamine, non-steroidal anti-inflammatory drugs and regional anesthesia (Kim SI, Ha, & Oh, 2016).

As regard post-operative VAS score in our study it was significantly lower in group GC, G, and C respectively than group O.

By comparing our result with (Pandey et al., 2004) who studied fifty-six ASA I and II patients were randomly allocated into two equal groups to receive either gabapentin 300 mg or placebo two hours before lumbar discectomy surgery. After surgery, the pain was assessed on a visual analogue scale (VAS) at intervals of 0–6, 6–12, 12–18, and 18–24 hr at rest. Patients in the gabapentin group had significantly lower VAS scores gradually at all-time intervals than those in the placebo group at the first 6hr post-operative the mean pain score was 3.5 ± 2.3 in gabapentin group and 6.1 ± 1.7 in placebo group and our result found at the 1st 6 hr the median pain score in the three groups (GC, G, C) was 3 and in placebo was 6, so that at the 1st 6 hr postoperatively this result agree with our result in using gabapentin in the same dose but we use it with combination of celecoxib as preoperative preemptive multimodal analgesia for post-operative pain management. In his study the pain score continue to decrease in gabapentin group in the all-time intervals that didn’t happen in our study and we found that there was insignificant increase in VAS score at the 6th hr postoperative and decreasing of VAS score started at the 8th hr in group GC ,at the 10th hr at group G then in the 24th hr in group C, this different in the effect after 6 hr post-operative may be related to our post-operative analgesic dose and different of type of surgery.

(Mahjoubifard et al., 2016) studied 76 patients scheduled for elective herniorrhaphy were
enrolled in this study. Patients were divided into 2 groups; celecoxib group (n=38) received 200mg celecoxib 2 h pre-operative and placebo group (n=38). Then pain score (VAS score) was recorded in 2nd, 6th, 12th and 24th hours after tracheal extubation. The result was that the mean of the VAS score after 2 hours was 5.7 by placebo but 2.2 by celecoxib with a significant difference (P= 0.003) agree with ours. The median VAS score in our result after 2 h was 2 at the three groups (GC, G, C) and 5 in the O group. the scores were not different too much after 6 hours (P= 0.3). These non-significant results continued later in cases but in our result after 6 h there was significantly decrease in VAS score in the three groups (GC, C, G) compared with placebo that may be due to using preoperative combination of gabapentin and celecoxib as preoperative preemptive multimodal analgesia for post-operative pain management.

(Vasigh, Najafi et al., 2016) in this randomized double-blind clinical trial, 114 patients scheduled for elective laminectomy with simple random sampling design divided into 3 groups. The patients in the group A (gabapentin) received 600 mg gabapentin two hours before surgery and 300 mg six hours after surgery, group B (celecoxib) received 400 mg celecoxib two hours before surgery and 200 mg six hours after surgery and group C (placebo) received a placebo capsule orally two hours before surgery and six hours after surgery and the VAS was used to determine severity of pain. The pain severity was assessed in the 2, 4, 6, 8, 12 and 24 hours after surgery. At measuring VAS at 2h and 4h post operatively they found that VAS decreasing more in gabapentin than celecoxib without significant difference but with significantly difference in comparison to placebo. In our result we found the same by using combination of both drugs in lower doses than they used. At 6h in his study VAS score still decreasing but in our result there was insignificant increase in VAS in each group. Then after giving postoperative dose of analgesia the VAS at 8hr, 12hr, 24hr were significant decrease in gabapentin and celecoxib respectively (P < 0.001, P < 0.05). This decreasing in VAS score started at 8th hr in GC group, 10th hr in G group without no decreasing occurred in C group. This difference in result may be related to the difference in doses and different combination which used and the difference in type of operation in our research.

In (Vasigh, Jafarpour, et al., 2016) they found that VAS in the gabapentin plus celecoxib group was significant lower compared to the placebo and gabapentin group respectively at various intervals, this is in agreement with our study in using gabapentin and celecoxib combination and this is better than using gabapentin alone in higher dose, In their result they found that at 12hr and 24hr VAS score still decreasing in gabapentin plus celecoxib group and gabapentin respectively but in our result VAS didn’t decrease more that may be due to different type of operation.

In (Paul et al., 2013) who studied patients who underwent primary total knee arthroplasty, Subjects received either gabapentin 600 mg preoperatively followed by 200mg every eight hours for two days or matching placebo and the result was mean pain scores at rest, with passive movement, or with weight bearing were similar in both groups at corresponding time periods for the first three days following surgery this study didn’t agree with ours, that may be due to absent of drug combination and different procedure.

In (Waraporn et al., 2011) pain score recorded at 1, 4, 8, 12, 16, 20, and 24 hours post-operatively using numerical rating scale (NRS) which decrease in group GC, C and G respectively but with no significant difference between the four groups at all-time interval except hour 24 (P-value 0.014) and Comparing group by group at hour 24, no significant difference was found this study disagree with our study, this dis agreement may be related to different types of operation which were included in their study.

We assessed Preoperatively anxiety score and RBS followed by intra operative, hemodynamics (HR, MAP, So2), end tidal isoflurane concentration (lower anesthetic requirement with lower BIS values from 40:50), analgesic requirement, RBS, and till the end of operation. Then during the first 24 hour post-operative, VAS score, hemodynamics (HR, MAP, So2, RR), RBS, time of 1st analgesic request, frequency of analgesic requirement, patient satisfaction score, and complications were recorded.
We conclude that preoperative and postoperative combination of gabapentin 300mg and celecoxib 200mg provide lower preoperative anxiety score, better intraoperative (hemodynamics, RBS, anesthetic requirement and analgesic requirement), lower postoperative (VAS score of pain, RBS and analgesic requirement) higher patient satisfaction score when compared with using every drug alone or placebo respectively in patients who underwent spine fixation surgery.

Recommendation
Based on the current study we recommend:
1- Usage of preemptive multimodal analgesic with various mechanism of action is more useful in post-operative pain relieve after major surgery.
2- Further studies to test different doses of used drugs.
3- Further studies to objectively assess postoperative pain.
4- Multicenter study may be needed for more accurate evaluation.
5- Further studies to assess chronic post-surgical pain (CPSP) by prolonged time for follow up patients.

References

