Research Article

Serum Levels of Vitamin D in Children with Bronchial Asthma

* Department of Pediatrics, ** Department of Chest diseases ***Department of Clinical Pathology
Minia University, Egypt

Abstract

Background: the role of micronutrient deficiencies in the etiology of asthma has gained considerable attention in recent years. There is mounting evidence that vitamin D confers a protective effect against asthma risk and severity; however, evidence for an important relationship remains controversial. Aim: this study was designed to measure vitamin D level in asthmatic patients and to detect if there is a relation between vitamin D deficiency and bronchial asthma. Patients and methods: this case control cross-sectional study was conducted on 60 asthmatic patients from outpatient clinics of the Departments of Pediatrics and Chest diseases in El-Minia University Hospitals. Twenty healthy children of matched age and sex were recruited as the control group. According to asthma severity and control patients were classified into mild, moderate or severe persistent asthma and controlled, partially controlled or uncontrolled asthma based on GINA guidelines. Patients and controls were subjected to measurement of serum vitamin D, serum total IgE and Prebronchodilator pulmonary function tests. Asthmatic Patients were subjected to chest X-ray, pre and postbronchodilator pulmonary function tests. Results: serum vitamin D levels were found to be significantly decreased in asthmatic children compared with the control group (P< 0.0001). Eighty percent of asthmatic cases were vitamin D defective. Twenty cases were vitamin D deficient (<20 ng/ml), whereas another 28 were vitamin D insufficient (≥ 20 ng/ml to <30 ng/ml). The asthmatic children had a significant increase in the total leukocytic count, eosinophilic count, total immunoglobulin E, and serum alkaline phosphatase. Prebronchodilator pulmonary function tests were significantly decreased in the asthmatic cases compared with the control. Significant negative correlation was found between serum vitamin D levels and the postbronchodilator % predicted forced expiratory volume in one second. A highly significant negative correlation was found between serum vitamin D levels and eosinophilic count and total immunoglobulin E. As the asthma severity increased, vitamin D levels decreased. There was a significant difference between the vitamin D levels in asthmatic children and asthma severity (p<0.001). As vitamin D levels decreased the frequency of controlled asthma cases decreased (p =<0.0001). Asthma severity and control were classified according to the Global Initiative for Asthma (GINA) classification. Vitamin D deficiency was the strongest predictor of asthma (stronger than familial history of asthma or serum IgE levels). Conclusion: children with asthma and low vitamin D levels had reduced pulmonary functions, frequent asthma exacerbations, leading to more emergency department visits and more use of health services owing to more hospitalizations. Difficulty in asthma control was observed in asthmatic children with low vitamin D levels. We found a relationship between serum vitamin D levels and asthma; however, this relationship could be influenced by multiple factors such as BMI, seasonal variation, residency, social, cultural, behavioral factors, and eating habits.

Keywords: bronchial asthma, children, pulmonary function tests, vitamin D.
Introduction

Asthma is a highly prevalent chronic respiratory disease affecting 300 million people world-wide\(^1\). The burden of this disease to governments, health care systems, families, and patients is increasing worldwide. The rate of asthma increases as communities adopt western lifestyles and become urbanized. With the projected increase in the proportion of the world's urban population from 55% to 69% in 2015, there will likely be a marked increase in the number of asthmatics worldwide over the next decade. It is estimated that there may be an additional 100 million persons with asthma by 2025\(^2\). Asthma is by far the commonest of all chronic diseases of childhood and estimates from developed countries suggest that it affects between 11 and 20% of all school age children\(^3\). The prevalence of asthma among Egyptian children aged 3 - 15 years was estimated to be 8.2%. Of major concern is the annual increase in mortality\(^4\). It is estimated that asthma accounts for about one in every 250 deaths worldwide. Many of the deaths are preventable, being due to suboptimal long-term medical care and delay in obtaining help during acute exacerbation. The role of micronutrient deficiencies in the etiology of asthma has gained considerable attention in recent years\(^5\). There is mounting evidence that vitamin D confers a protective effect against asthma risk and severity; however, evidence for an important relationship remains controversial\(^6\).

Patients and methods

This study was conducted on 80 children from outpatient clinics of the Departments of Pediatrics and Chest diseases in El-Minia University Hospitals during the period from January 2012 to July 2013. The study populations were classified into 4 groups, their ages ranged between 6 and 18 years.

- **Group I**: included 20 patients suffering from mild persistent asthma.
- **Group II**: included 20 patients suffering from moderate persistent asthma.
- **Group III**: included 20 patients suffering from severe persistent asthma.
- **Group IV**: included 20 healthy age and sex matched controls.

According to asthma severity and control patients were classified into mild, moderate or severe persistent asthma and controlled, partially controlled or uncontrolled asthma based on GINA guidelines\(^7\).

Twenty healthy controls without a history of any allergic disorders in the child or first-degree relatives were also examined. Non-asthmatic controls comprised children with no respiratory disease whose parents had consented for a blood test during an elective surgical procedure. Participants who had a history of consumption of any supplements of vitamin D or drugs that modulate serum vitamin D levels, such as systemic glucocorticoids and anticonvulsants, and those who had chronic pulmonary diseases were excluded.

Patients and controls were subjected to: thorough history taking, complete physical examination, complete blood count, serum calcium, phosphorus, alkaline phosphatase, serum total IgE was analyzed by the Beckman Access 2 immunoassay analyzer were measured by the Phadia-Immunocap 250 analyzer\(^8\), measurement of vitamin D [measured as 25-hydroxy cholecalciferol, 25(OH) D] by ELISA technique, and Prebronchodilator pulmonary function tests. **Patients with bronchial asthma were subjected to** chest X-ray and pre and postbronchodilator pulmonary function tests.

Pulmonary Function Testing:

Spirometry was conducted using interactive computerized incentive spirometry (Vitalograph Pneumotrac, Spirotac IV software). At least 3 spirometric-manoeuvres were performed, with at least 2 reproducible manoeuvres required for each test. The best forced vital capacity (FVC) and forced expired volume in 1 second (FEV1) of the 3 manoeuvres was selected for data analysis. All spirometry results were compared to approved recent reference ranges. Bronchodilator response (BDR) was assessed by repeating spirometry 15 minutes after the administration of nebulized salbutamol 0.5 ml plus 2 ml normal saline via nebulizer. Percentage increases in FEV1, FVC were recorded\(^9\).
Statistical analysis:
Data were statistically analyzed using Student’s t-test, one way ANOVA, and chi-square (linear by linear correlation) tests, as applicable (with a preset probability of $P <0.05$). Results are presented as arithmetic mean ± SD. Statistical tests were conducted using the SPSS software package, version 16 (SPSS Inc., Chicago, IL, USA) on a personal computer. Additionally, using simple, multiple, and logistic regression analysis, the simultaneous effects of confounding variables such as, age, sex, vitamin D levels, and body mass index (BMI) on the asthmatic state were measured.

Results:
Table (1) showed highly significant differences between children with bronchial asthma and control subjects regarding serum vitamin D levels, eosinophil count, total IgE% predicted FEV1 and FEV1/FVC ratio% (P-value <0.0001 for all) and also it showed significant differences regarding serum calcium, serum phosphorus, alkaline phosphatase, total leukocytic count and % predicted FVC.

Table (2) shows prevalence of vitamin D deficiency in asthmatic children and control group. Moderate vitamin D deficiency was found in 46.66% of asthmatics and 20% of controls, while 20% of asthmatics had severe deficiency compared to 15% of controls. In asthmatic children, there was positive family history of asthma ($P=0.004$). There were no significant difference between patients and controls regarding age and residence but there was significant difference between them regarding BMI ($P=0.02$).

Table (3) shows predictors for development of asthma in studied patients using multivariate logistic regression analysis. Deficiency in vitamin D level (OR 4.81; 95% CI 2.39–8.58; $P<0.001$) was the major predictor of asthma in studied patients. Familial history of asthma and elevated serum IgE are both strong predictors ($P<0.001$ and $P = 0.003$, respectively) of the disease. Elevated child’s BMI ($P = 0.004$) and parental consanguinity ($P = 0.005$) were considered as other contributing risk factors.

Figure (1): shows distribution of serum levels of vitamin D in asthmatic children who were classified according to the GINA guidelines of asthma severity. It was 24.56±7.05, 18.42±10.12, and 11.13±5.94 in mild, moderate, and severe persistent asthma respectively. As the asthma severity increased, the vitamin D levels decreased. There was a significant difference between the vitamin D levels in asthmatic children and asthma severity ($P<0.001$).

Figure (2): shows the distribution of serum levels of vitamin D in asthmatic children classified according to the GINA guidelines of asthma control. It was 26.28±10.57, 17.31±9.25, and 14.04±7.54 in controlled, partially controlled, and uncontrolled asthmatic patients. As the vitamin D level decreased the frequency of controlled asthma cases decreased ($P < 0.0001$).

Figure (3): shows positive correlation between serum vitamin D levels (ng/mL) and prebronchodilator % predicted FEV1 (L).

Figure (4): shows negative correlation between serum vitamin D levels (ng/mL) and postbronchodilator % predicted FEV1 (L).
Table (1). Baseline serum laboratory parameters and pulmonary function tests among asthmatic and control children

<table>
<thead>
<tr>
<th>Laboratory parameter</th>
<th>Asthmatics (N=60)</th>
<th>Controls (N=20)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum vitamin D ng/ml</td>
<td>22.3±8.63</td>
<td>31.65±10.84</td>
<td>0.0001*</td>
</tr>
<tr>
<td>Calcium, mmol/l</td>
<td>9.34±1.08</td>
<td>9.89±0.78</td>
<td>0.03*</td>
</tr>
<tr>
<td>Phosphorus, mmol/l</td>
<td>4.45±0.91</td>
<td>5.37±2.46</td>
<td>0.01*</td>
</tr>
<tr>
<td>Alkaline phosphatase, U/l</td>
<td>475.21±246.19</td>
<td>344.92±109.71</td>
<td>0.02*</td>
</tr>
<tr>
<td>Total leucocytic countX1000/mcl</td>
<td>7.4±2.4</td>
<td>6.2±1.9</td>
<td>0.04*</td>
</tr>
<tr>
<td>Eosinophil count, cells/mm3</td>
<td>409.1±137.3</td>
<td>161±52.5</td>
<td>0.0001*</td>
</tr>
<tr>
<td>Total IgE, IU/ml</td>
<td>70.6±36.4</td>
<td>17.4±9.3</td>
<td>0.0001*</td>
</tr>
<tr>
<td>Prebronchodilator lung function</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEV1, L</td>
<td>71.18±15.24</td>
<td>96.23±10.45</td>
<td>0.0001*</td>
</tr>
<tr>
<td>% Predicted FVC, L</td>
<td>91.17±12.08</td>
<td>97.10±10.08</td>
<td>0.04*</td>
</tr>
<tr>
<td>% Predicted FEV1/FVC ratio%</td>
<td>72.27±11.28</td>
<td>96.22±8.23</td>
<td>0.0001*</td>
</tr>
</tbody>
</table>

*Significant.

IgE: Immunoglobulin
FEV 1: Forced expiratory volume 1 in one second
FVC: Forced vital capacity

Table (2): Prevalence of vitamin D deficiency and assessment of different Covariates among asthmatic patients and controls.

<table>
<thead>
<tr>
<th>Covariate</th>
<th>Asthmatic patients</th>
<th>Controls</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin D status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderate vitamin D deficiency (N&%)</td>
<td>(28) 46.66%</td>
<td>(4) 20%</td>
<td>0.1</td>
</tr>
<tr>
<td>Severe Vitamin D deficiency (N&%)</td>
<td>(12) 20%</td>
<td>(3) 15%</td>
<td>0.051</td>
</tr>
<tr>
<td>Positive family history of asthma [N (%)]</td>
<td>36 (60)</td>
<td>4 (20)</td>
<td>0.004</td>
</tr>
<tr>
<td>Age in years</td>
<td>9.78±2.68</td>
<td>9.65±2.15</td>
<td>0.84</td>
</tr>
<tr>
<td>Residence [N (%)]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rural</td>
<td>38</td>
<td>11</td>
<td>0.69</td>
</tr>
<tr>
<td>Urban</td>
<td>22</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>BMI (Kg/m²)</td>
<td>18.26±3.01</td>
<td>20.02±2.9</td>
<td>0.02*</td>
</tr>
</tbody>
</table>

*Significant

BMI: Body mass index

Table (3): Predictors of asthma in the studied children using multivariate logistic regression analysis.

<table>
<thead>
<tr>
<th>Independent variable</th>
<th>OR</th>
<th>CI 95%</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Family history of asthma</td>
<td>2.35</td>
<td>1.29-4.21</td>
<td>0.001*</td>
</tr>
<tr>
<td>Parental consanguinity</td>
<td>1.74</td>
<td>1.13-2.59</td>
<td>0.005*</td>
</tr>
<tr>
<td>BMI (Kg/m²)</td>
<td>1.52</td>
<td>1.12-2.11</td>
<td>0.004*</td>
</tr>
<tr>
<td>Vitamin D deficiency</td>
<td>4.81</td>
<td>2.39-8.58</td>
<td>0.001*</td>
</tr>
<tr>
<td>Serum IgE level</td>
<td>1.86</td>
<td>1.22-2.82</td>
<td>0.003*</td>
</tr>
</tbody>
</table>

*Significant

OR: Odds ratio, CI: Confidence interval, BMI: Body mass index.
Figure 1: Box plot of serum vitamin D levels by asthma severity according to GINA guidelines.

Figure 2: Box plot of serum vitamin D levels by asthma control according to GINA guidelines.
Figure (3) shows positive correlation between serum levels of vitamin D and prebronchodilator % predicted FEV1 ($r = 0.41$, $P = 0.001$).

Figure (4) shows negative correlation between serum levels of vitamin D and postbronchodilator % predicted FEV1 ($r = -0.41$, $P = 0.001$).

Discussion

We sought to study serum vitamin D levels in asthmatic children to determine the association with asthma prevalence, pulmonary functions and biomarkers for asthma. This study conducted on 60 asthmatic children and 20 control subjects.

The present study revealed that serum vitamin D levels were significantly decreased in all asthmatic children compared to the healthy control group.

Although our study performed in Minia Governorate in Upper Egypt which is a sunny area, 80% of asthmatic cases were vitamin D defective. These results are in agreement with Elnady et al., and Brehm et al., (10,11) who explained the cause of vitamin D deficiency by the fact that it does not naturally occur in most foods that humans eat plus the primary sources of this vitamin are natural production in the skin secondary to sun exposure, and secondarily from fortified foods and supplements (12).
Although cutaneous production due to ultraviolet radiation is considered the most important source of vitamin D, self-reported sun exposure alone is not a reliable marker of vitamin D sufficiency. In fact, vitamin D deficiency has been documented in healthy subjects despite reports of abundant solar exposure in our population in Minia Governorate as well as in other areas like Honolulu, Hawaii (latitude 218N)\(^{(13)}\), Beirut, Lebanon (latitude 338N)\(^{(14)}\), and Australia (latitude 27–438S)\(^{(15)}\). This is likely due to a combination of behavioral factors (e.g., increased prosperity and adoption of a Western lifestyle, sunscreen use, increased time spent indoors, and clothing coverage) and intrinsic factors such as skin melanin content, decreased cutaneous production of vitamin D, or increased cutaneous destruction of vitamin D. Also the present study is in agreement with Alyasin et al.,\(^{(16)}\)Checkley et al.,\(^{(17)}\)Freishtat et al.,\(^{(18)}\)Awasthi and Vikram\(^{(19)}\), Uysalol et al.,\(^{(20)}\)Kunisaki KM et al.,\(^{(21)}\)and Gupta et al.,\(^{(22)}\). In contrast to the results of the present study Ozaydin et al.,\(^{(23)}\) and Menon et al.,\(^{(24)}\) did not detect any significant difference in vitamin D levels in asthmatic patients compared to control group. They explained this contradiction to other studies via a number of limitations in the interpretation of their results. The first shortcoming is the cross-sectional design of the study which makes it difficult to establish causality. Another factor to take into consideration in interpreting their results is the accuracy of documentation of patients’ disease state. Devereux et al.,\(^{(25)}\), Goleva et al.,\(^{(26)}\), and Gergen et al.,\(^{(27)}\) found no significant association between serum levels of vitamin D and bronchial asthma. This is against our results.

In this study, which was conducted based on the categorization of vitamin D levels, levels are classified as sufficient (≥30 ng/ml), insufficient (≥20 and <30 ng/mL) and deficient (<20 ng/ml); and these accounted for 20%, 46.67%, and 33.33% of asthmatic children respectively. Studies conducted in Italy on children with a mean age close to those we studied\(^{(28)}\), and in the Middle East\(^{(29)}\) showed similar results, whereas the percentages found in a study in Iran were totally different (84% sufficient, 12% insufficient and 4% deficient)\(^{(30)}\).

Our study classified the level of asthma control based on the GINA guidelines\(^{(3)}\). There were significant differences in serum vitamin D levels between the levels of asthma control, which is consistent with the results of Gupta et al.,\(^{(22)}\) Elnady et al.,\(^{(10)}\) and Uysalol et al.,\(^{(20)}\) who reported that children with uncontrolled were found to have lower vitamin D levels than those with partially controlled or controlled asthma \(^{(20)}\). Chinellato et al.,\(^{(26)}\), investigated the correlation of serum vitamin D levels and asthma control and found a positive correlation between vitamin D levels and the control of asthma symptoms. Krobrakuchai et al.,\(^{(30)}\) and Devereux et al.,\(^{(25)}\) reported that there were no significant differences in serum vitamin D levels between the levels of asthma control. This is against our results and may be explained by the lower prevalence of vitamin D deficiency (19%) /insufficiency (44.8%) in their studied patients. Another possible explanation for no association of vitamin D statuses with the levels of asthma control may be that this is a cross-sectional study and long-term follow-up studies focusing on changes in vitamin D status and asthma parameters will be needed to clarify the effect of vitamin D status on asthma. Furthermore, many confounding factors can affect vitamin D levels or asthma control. The association between serum vitamin D and asthma control may depend on the genotype or phenotype of asthmatic patient. Awasthi and Vikram\(^{(19)}\) found that mean level of serum Vitamin D in controlled cases of bronchial asthma was similar to the control group. However, mean serum vitamin D level of partly controlled and uncontrolled cases of bronchial asthma were significantly lower when compared to controls. Similar findings have been reported by Gupta et al.,\(^{(25)}\), who did their study in 86 asthmatic children in London, United Kingdom.

The present study classified asthma severity based on the GINA guidelines\(^{(7)}\). we found a strong inverse relationship between serum levels of vitamin D and asthma severity. This is in agreement with Brehm et al.,\(^{(11)}\)
who explained this association by the fact that higher vitamin D levels reflect a higher intake of dietary vitamin D, which may be correlated with the intake of other nutrients that may modify asthma severity, such as vitamin E. Higher vitamin D intake may also be related to socioeconomic status (SES). Vitamin D insufficiency was significantly associated with increased risk of severe asthma exacerbations in Puerto Rican and North American children (31) which are consistent with our results. Uysalol et al.,(20), Freishat et al.,(18), Alyasin et al.,(16) Gupta et al.,(22), and Chinellato et al.,(28), reported that asthma severity increased with vitamin D deficiency. The previous reports are in agreement with our results. Litonjua et al.,(32) proved that low vitamin D levels were associated with worse bronchial asthma symptoms and severity. Menon et al.,(24), found no relationship between serum vitamin D concentrations and steps of asthma severity. This result was different from ours. Their stratification of asthma severity was based on controller medications and their dosages as outlined by the NHLBI's guidelines(33), whereas our study categorized severity based on the GINA guidelines(7). Gergen et al.,(27), reported that there is a lack of a relation between serum 25-hydroxyvitamin D concentrations and asthma in adolescents. In their study serum vitamin D concentrations were not consistently related to multiple measures of asthma severity, including the frequency of asthma exacerbations, the severity of symptoms and the amount of asthma therapy required to achieve control. This also is against our results.

Our study revealed a significant decrease in pulmonary function tests (pre and postbronchodilator FEV1, FVC, and FEV1/FVC ratio) in asthmatic children. Significant positive correlations were found between the serum vitamin D level and the percent predicted pulmonary function tests in asthmatics (prebronchodilator FEV1, FVC, and FEV1/FVC ratio). Significant negative correlations were found between the serum vitamin D level and the percent predicted pulmonary function tests in asthmatics (postbronchodilator FEV1, FVC, and FEV1/FVC ratio). These findings suggest the involvement of vitamin D in lung function and the development of airflow limitation. Vitamin D influences tissue remodeling and collagen synthesis by inhibiting expression of matrix metalloproteinase-9 (MMP-9) and “a disintegrin and metalloproteinase 33” (ADAM-33) gene. In vitro studies have also shown that Vitamin D has direct anti-proliferative effect on human airway smooth muscle cells. These actions mean that vitamin D may influence tissue remodeling and probably lung function(34). Sutherland et al.,(35) and Black and Scrapp(36), reported that serum vitamin D was positively correlated with FEV1 and glucocorticoid response as vitamin D insufficiency or deficiency was associated with airway hyper-responsiveness. Gupta et al.,(22), detected a positive correlation between serum vitamin D levels and percent predicted FEV1 and FVC. Serum vitamin D levels significantly and inversely correlated with percent BDR and, in a post hoc analysis, BDR (FEV1 improvement of at least 12%). Awasthi and Vikram(19), detected a positive correlation between serum vitamin D levels and percent predicted FEV1. Similar results were found by Alyasin et al.,(16), from Shiraz, Iran and Searing et al.,(37) from Denver, USA. Alyasin et al.,(16), performed a linear association analysis of serum vitamin D levels and measures of lung function which revealed that the direct associations with predicted FEV1 and also with FEV1/FVC ratio were statistically significant. All the previous reports are in agreement with our results. However, Maalmi et al.,(38) from Tunis, Tunisia, Brehm et al.,(11), Krobrakulchai et al.,(30), Gergen et al.,(27) and Litonjua et al.,(32) had results contrary to ours.

In our study, only 18.33% of children were receiving inhaled corticosteroids and 8.33% were receiving leukotriene inhibitors while 40% were receiving oral steroids and 68.33% were receiving oral theophylline and this reflects weakness of the health care system in Egypt as these values are much lower than what might be expected based on recent guidelines for treatment of asthma in children. These values are different than those in Latin America(39), Europe(40), Asia
and the United States. Current evidence suggests that anti-inflammatory medications are underutilized even in environments in which the ability to afford these medications is not an issue, which is the case in Egypt.

Although urgent visits for asthma were high in our population, this is because this variable includes unscheduled visits not only to emergency departments but also to a physician’s private clinic, a nebulization room, or a primary health care center. On the other hand, the rate of hospitalization in this study (25%) is higher than that seen in North America (5%) and Europe (7%) and likely indicates a more severe asthma exacerbation.

There are a number of limitations to be considered in the interpretation of our results. The first is the cross-sectional design of the study which makes it difficult to establish causality between vitamin D status and bronchial asthma. Also all subjects of bronchial asthma are not followed up. We also has a small sample size of asthmatic patients and controls which is inadequate to detect subtle differences between the groups and could have resulted in type 2 error. Another factor to take into consideration in interpreting our results is the inaccuracy of documentation of patients’ disease state and treatment modalities. Also we did not study seasonal variation which affects vitamin D status as well as frequency of asthmatic attacks.

In conclusion, vitamin D deficiency was the strongest predictor of asthma in our patients (stronger than familial history of asthma or serum IgE levels). Long-term follow-up studies with sufficient sample size focusing on changes in vitamin D status and asthma parameters will be needed to clarify the effect of vitamin D status on asthma. Given the emerging association between low vitamin D levels and asthma, strong consideration should be given to routine vitamin D testing in children, particularly those with asthma, and supplementation should be provided accordingly.

References

15. van der Mei IA, Ponsonby AL, Engelsen O, Pasco JA, McGrath JJ, Eyles DW, Blizzard L, Dwyer T, Lucas R, Jones G. The high prevalence of vitamin D insufficiency across Australian populations is only partly explained by season and latitude. Environ Health Perspect 2007;115: 1132–1139.

34. Song Y, Qi H, Wu C. Effect of 1,25-(OH)2D3 (a vitamin D analogue) on passively sensitized human airway smooth muscle cells. Respirology. 2007;12:486–94.

35. Sutherland ER, Goleva E, Jackson LP, Stevens AD, Leung DY. Vitamin D levels, lung function, and steroid response in adult asthma. Am J Respir Crit Care Med 2010;181:699–704.

